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Recent advances in computational power and numerical control algorithms have enabled robots
to execute complex, precise motions across a wide range of applications. In particular, numerical
trajectory optimization methods are widely used to generate task-specific solutions [1], and learning-
based control methods [2] allow robots to generate efficient motions without explicit models by
learning from input-output data. However, these approaches often focus on optimizing individual
motion strategies without explicitly characterizing the fundamental motion principles—such as how
locomoting systems generate displacement through cyclic shape changes or how optimal motion
strategies adapt to external forces—thereby hindering the development of more generalizable and
interpretable motion strategies.

My research develops geometric insights into optimal motions and derives control
strategies by integrating geometric mechanics and Riemannian variational calculus.
Geometric mechanics [3] provides an intuitive framework for understanding motion principles, such
as the net displacement generated by joint trajectories. Riemannian variational calculus (often
appearing as the indirect method of optimal control) reveals the optimality conditions necessary
to generate efficient motion by characterizing a system’s dynamics through Riemannian geometry.
This statement outlines my research contributions, along with potential directions for extending
my current work.

Past & Current research

My research examines the joint-level dynamics of robotic systems and their resulting motion strate-
gies, focusing on two key categories: locomoting systems and manipulators. Locomoting systems
generate body motion through internal shape changes (i.e., gaits), as exemplified by a three-link
swimmer navigating a viscous fluid using steering gaits (Figure 1(a-b)). Each gait incurs a cost,
such as dissipated power or actuation effort, and optimal motions maximize displacement relative
to this cost. While selecting appropriate gaits to achieve desired motions, a mid-level controller
regulates gait transitions to ensure smoothness and efficiency. By analyzing locomoting systems,
I have investigated optimal gait families for generating diverse net displacements and
geometric principles of optimal gait transitions.
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Figure 1: (a-c) Steering Pareto-front gait family of Purcell three-link swimmers. (a) Optimal gaits in metric-weighted joint
space, with level sets of the forward displacement function. The metric-weighted path length represents effort, and the enclosed
signed area determines net displacement. Red and pink cycles indicate forward and turning gaits. (b) Corresponding body
trajectories. (c) Pareto front in forward-turning velocity space at given effort levels. (d-e) Optimal gait transition from forward
to turning motion. (d) Three gait-switching trajectories in metric-weighted joint space. (e) Corresponding body trajectories.
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Robotic manipulators, in contrast, achieve precise motion through coordinated joint trajectories
that directly govern end-effector movement. Their dynamics and optimal motions are significantly
influenced by external forces such as gravity and friction. For example, optimal motions under
gravity adapt to the downward pull, while those under velocity-dependent friction follow the short-
est path to minimize resistance. I have explored the fundamental properties of optimal
trajectories under external forces.

Optimal Gait Family

A gait library [4] consists of discrete, optimized gaits that enable systems to reach desired positions
(controllability [5]) while minimizing gait transitions (maneuverability [6]). Expanding on this
concept, my work focuses on gait families [7, 8]—continuous mappings that associate control
parameters with gaits corresponding to specific step sizes and steering rates, thereby enhancing
both controllability and maneuverability through continuity.

I developed a framework to generate optimal gait families without individually op-
timizing each gait. This framework includes two compensation methods: 1) A local search
method using nonlinear parametric programming to construct smooth Pareto front curves that
maximize forward and turning velocities when both cannot increase simultaneously. 2) A global
search method that ensures robustness near bifurcation points (e.g., multiple solutions), enabling
smooth and adaptable transitions across the gait family. These approaches allow us to generate
continuous steering gait families, as illustrated in Figure 1(a-c).

Optimal Gait Transition

To integrate optimal gait families into motion planning, I developed a gait transition trajec-
tory generator based on a Riemannian variational calculus [9]. I analyzed gait transition
dynamics and their costs, considering Riemannian geometry: metric-weighted pathlength for drag-
dominated systems and Riemannian curvature for inertia-dominated systems to capture second-
order effects. Three optimization objectives were defined: path-optimal (minimizing kinetic en-
ergy), acceleration-optimal (ensuring smooth transitions aligned with natural dynamics), and
actuation-optimal (minimizing actuator torque by accounting for physical configuration of the
actuators). These approaches enable smooth, efficient, and adaptable gait transitions, as illustrated
in Figure 1(d-e).

Geometric Effects of External Forces on Optimal Trajectories

Figure 2: Actuation-optimal trajectories:
Baseline (black), With gravity effects (red),
With drag effects (blue).

To extend the geometric optimal control framework to general
robotic systems, I refine analytical tools to explain how
external forces (described by a function of joint posi-
tion and velocities) influence optimal trajectories [10].
The key findings are: (1) Optimal trajectories of mechanical
systems depend on the curvature of the Riemannian manifolds
defined by kinetic energy metrics. (2) Optimal trajectories un-
der potential forces (e.g., gravity, elastic forces) are shaped
by the curvature of potential fields on the manifold. (3) Drag
forces (e.g., friction) cause the straightening effect of opti-
mal trajectories, minimizing drag-metric-weighted pathlength.
Based on these approaches, I analyze the optimal trajectories
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of 6-degree-of-freedom robotic manipulators with gravitational
and joint friction forces, as illustrated in Figure 2.

Research Goal and Future research

My research provides an analytical framework for understanding robots’ optimal dynamics. My
long-term goal is to refine this framework to handle complex dynamics and develop practical control
algorithms for real-world applications through a geometric understanding of motion.

Building on my previous work, I aim to develop an interface that integrates offline-
optimized gaits with high-level motion planning to achieve agile and robust motion
control and planning [11, 12]. By leveraging continuous optimal gait families and their smooth
transitions, this approach reduces problem complexity, allowing conventional planners to focus on
a single rigid-body (SRBD) motion. This advancement will enable robotic locomotion systems to
dynamically adjust their plans, broadening their application scope while ensuring computational
efficiency.

Furthermore, I am interested in enhancing control robustness against disturbances us-
ing geometric tools. While my previous work has focused on the geometric understanding of
optimal robot motion, real-world control design requires robustness to uncertainties. Geometric
and analytical tools provide intuitive insights into stability and resilience. For example, the con-
trol contraction metric represents stability as Riemannian energy and evaluates robustness against
unknown dynamics [13]. Combined with my previous work, these insights will aid in designing
controllers that generate optimal and robust robot motions.
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